Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386149

RESUMEN

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Asunto(s)
Reproducción , Árboles , Fertilidad , Semillas , Saciedad
2.
New Phytol ; 239(3): 830-838, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37219920

RESUMEN

The periodic production of large seed crops, or masting, is a widespread phenomenon in perennial plants. This behavior can enhance the reproductive efficiency of plants, leading to increased fitness, and produce ripple effects on food webs. While variability from year to year is a defining characteristic of masting, the methods used to quantify this variability are highly debated. The commonly used coefficient of variation lacks the ability to account for the serial dependence in mast data and can be influenced by zeros, making it a less suitable choice for various applications based on individual-level observations, such as phenotypic selection, heritability, and climate change studies, which rely on individual-plant-level datasets that often contain numerous zeros. To address these limitations, we present three case studies and introduce volatility and periodicity, which account for the variance in the frequency domain by emphasizing the significance of long intervals in masting. By utilizing examples of Sorbus aucuparia, Pinus pinea, Quercus robur, Quercus pubescens, and Fagus sylvatica, we demonstrate how volatility captures the effects of variance at both high and low frequencies, even in the presence of zeros, leading to improved ecological interpretations of the results. The growing availability of long-term, individual-plant datasets promises significant advancements in the field, but requires appropriate tools for analysis, which the new metrics provide.


Asunto(s)
Fagus , Pinus , Quercus , Reproducción , Semillas
3.
Ecol Evol ; 13(3): e9860, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911314

RESUMEN

Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV increases niche overlap, previous studies have found contrasting results regarding the effect of IV on species coexistence. We aim at showing that the large IV observed in data does not mean that conspecific individuals are necessarily different in their response to the environment and that the role of high-dimensional environmental variation in determining IV has largely remained unexplored in forest plant communities. We first used a simulation experiment where an individual attribute is derived from a high-dimensional model, representing "perfect knowledge" of individual response to the environment, to illustrate how large observed IV can result from "imperfect knowledge" of the environment. Second, using growth data from clonal Eucalyptus plantations in Brazil, we estimated a major contribution of the environment in determining individual growth. Third, using tree growth data from long-term tropical forest inventories in French Guiana, Panama and India, we showed that tree growth in tropical forests is structured spatially and that despite a large observed IV at the population level, conspecific individuals perform more similarly locally than compared with heterospecific individuals. As the number of environmental dimensions that are well quantified at fine scale is generally lower than the actual number of dimensions influencing individual attributes, a great part of observed IV might be represented as random variation across individuals when in fact it is environmentally driven. This mis-representation has important consequences for inference about community dynamics. We emphasize that observed IV does not necessarily impact species coexistence per se but can reveal species response to high-dimensional environment, which is consistent with niche theory and the observation of the many differences between species in nature.

4.
Nat Commun ; 13(1): 2381, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501313

RESUMEN

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Asunto(s)
Bosques , Semillas , Fertilidad , Reproducción , Semillas/fisiología , Árboles
5.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460530

RESUMEN

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Asunto(s)
Bosques , Árboles , Biodiversidad , Clima , Fertilidad , Semillas
6.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34983867

RESUMEN

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.


Asunto(s)
Cambio Climático , Árboles/fisiología , Ecosistema , Fertilidad/fisiología , Geografía , América del Norte , Incertidumbre
7.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34400503

RESUMEN

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Asunto(s)
Fertilidad , Modelos Biológicos , Regeneración , Árboles/crecimiento & desarrollo , Bosques
9.
Nat Commun ; 12(1): 1242, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623042

RESUMEN

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.


Asunto(s)
Cambio Climático , Árboles/fisiología , Fertilidad/fisiología , Geografía , Modelos Teóricos , América del Norte , Estaciones del Año
10.
Theor Popul Biol ; 130: 83-93, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31283916

RESUMEN

Size inequality has been considered a key feature of plant population structure with impacts on ecosystem functions. In forest ecosystems, studies examining the relationship between tree size inequality and stand productivity have produced mixed outcomes. These studies found positive, neutral or negative relationships and discussed how this could be influenced by competition for light between trees (e.g. light interception efficiency), but far less attention has been paid to the role played by tree ontogenetic growth. In this article, we present a simple mathematical model that predicts the basal area growth of a two-strata stand as a function of tree basal areas and asymmetric competition. Comparing the growth of this stand to the growth of a spatially homogeneous one-stratum stand and a spatially heterogeneous one-stratum stand, we show that higher growth of the two-strata stand is achieved for concave shape, increasing functions of ontogenetic growth and for low intensities of absolute size-asymmetric competition. We also demonstrate that the difference in growth between the two-strata stand and the one-stratum stands depends on tree size inequality, mean tree basal area and total basal area in the two-strata stand. We finally found that the relationships between tree size inequality and productivity can vary from positive to negative and even non-monotonous. However, we highlight that negative relationships may be more frequent. As a conclusion, our results indicate that ontogenetic growth can have a major impact on the form and the magnitude of the size inequality-productivity relationship.


Asunto(s)
Ecosistema , Bosques , Árboles/crecimiento & desarrollo , Eficiencia
11.
Glob Chang Biol ; 23(12): 5092-5107, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28580624

RESUMEN

Damage due to wind-storms and droughts is increasing in many temperate forests, yet little is known about the long-term roles of these key climatic factors in forest dynamics and in the carbon budget. The objective of this study was to estimate individual and coupled effects of droughts and wind-storms on adult tree mortality across a 31-year period in 115 managed, mixed coniferous forest stands from the Western Alps and the Jura mountains. For each stand, yearly mortality was inferred from management records, yearly drought from interpolated fields of monthly temperature, precipitation and soil water holding capacity, and wind-storms from interpolated fields of daily maximum wind speed. We performed a thorough model selection based on a leave-one-out cross-validation of the time series. We compared different critical wind speeds (CWSs) for damage, wind-storm, and stand variables and statistical models. We found that a model including stand characteristics, drought, and storm strength using a CWS of 25 ms-1 performed the best across most stands. Using this best model, we found that drought increased damage risk only in the most southerly forests, and its effect is generally maintained for up to 2 years. Storm strength increased damage risk in all forests in a relatively uniform way. In some stands, we found positive interaction between drought and storm strength most likely because drought weakens trees, and they became more prone to stem breakage under wind-loading. In other stands, we found negative interaction between drought and storm strength, where excessive rain likely leads to soil water saturation making trees more susceptible to overturning in a wind-storm. Our results stress that temporal data are essential to make valid inferences about ecological impacts of disturbance events, and that making inferences about disturbance agents separately can be of limited validity. Under projected future climatic conditions, the direction and strength of these ecological interactions could also change.


Asunto(s)
Sequías , Árboles , Viento , Bosques , Francia , Lluvia , Suelo , Suiza , Temperatura , Agua
12.
Ecology ; 98(4): 1180, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28145102

RESUMEN

We present repeated tree measurement data from 63 permanent plots in mountain forests in France. Plot elevations range from 800 (lower limit of the montane belt) to 1942 m above sea level (subalpine belt). Forests mainly consist of pure or mixed stands dominated by European beech (Fagus sylvatica), Silver fir (Abies alba), and Norway spruce (Picea abies), in association with various broadleaved species at low elevation and with Arolla pine (Pinus cembra) at high elevation. The plot network includes 23 plots in stands that have not been managed for the last 40 years (at least) and 40 plots in plots managed according to an uneven-aged system with single-tree or small-group selection cutting. Plot sizes range from 0.2 to 1.9 ha. Plots were installed from 1994 to 2004 and remeasured two to five times during the 1994-2015 period. During the first census (installation), living trees more than 7.5 cm in dbh were identified, their diameter at breast height (dbh) was measured and their social status (strata) noted. Trees were spatially located, either with x, y, and z coordinates (40 plots) or within 0.25-ha square subplots (23 plots). In addition, in a subset of plots (58 plots), tree heights and tree crown dimensions were measured on a subset of trees and dead standing trees and stumps were included in the census. Remeasurements after installation include live tree diameters (including recruited trees), tree status (living, damaged, dead, stump), and for a subset of trees, height. At the time of establishment of the plots, plot densities range from 181 to 1328 stems/ha and plot basal areas range from 13.6 to 81.3 m2 /ha.


Asunto(s)
Bosques , Árboles/clasificación , Francia , Noruega , Picea , Árboles/crecimiento & desarrollo
13.
PLoS One ; 11(3): e0151852, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26999820

RESUMEN

Plant structural diversity is usually considered as beneficial for ecosystem functioning. For instance, numerous studies have reported positive species diversity-productivity relationships in plant communities. However, other aspects of structural diversity such as individual size inequality have been far less investigated. In forests, tree size inequality impacts directly tree growth and asymmetric competition, but consequences on forest productivity are still indeterminate. In addition, the effect of tree size inequality on productivity is likely to vary with species shade-tolerance, a key ecological characteristic controlling asymmetric competition and light resource acquisition. Using plot data from the French National Geographic Agency, we studied the response of stand productivity to size inequality for ten forest species differing in shade tolerance. We fitted a basal area stand production model that included abiotic factors, stand density, stand development stage and a tree size inequality index. Then, using a forest dynamics model we explored whether mechanisms of light interception and light use efficiency could explain the tree size inequality effect observed for three of the ten species studied. Size inequality negatively affected basal area increment for seven out of the ten species investigated. However, this effect was not related to the shade tolerance of these species. According to the model simulations, the negative tree size inequality effect could result both from reduced total stand light interception and reduced light use efficiency. Our results demonstrate that negative relationships between size inequality and productivity may be the rule in tree populations. The lack of effect of shade tolerance indicates compensatory mechanisms between effect on light availability and response to light availability. Such a pattern deserves further investigations for mixed forests where complementarity effects between species are involved. When studying the effect of structural diversity on ecosystem productivity, tree size inequality is a major facet that should be taken into account.


Asunto(s)
Bosques , Modelos Biológicos , Árboles/anatomía & histología , Árboles/efectos de la radiación , Simulación por Computador , Europa (Continente) , Luz , Especificidad de la Especie
14.
Environ Manage ; 56(5): 1118-33, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26105969

RESUMEN

Mixed uneven-aged forests are considered favorable to the provision of multiple ecosystem services and to the conciliation of timber production and biodiversity conservation. However, some forest managers now plan to increase the intensity of thinning and harvesting operations in these forests. Retention measures or gap creation are considered to compensate potential negative impacts on biodiversity. Our objectives were to assess the effect of these management practices on timber production and biodiversity conservation and identify potential compensating effects between these practices, using the concept of ecological intensification as a framework. We performed a simulation study coupling Samsara2, a simulation model designed for spruce-fir uneven-aged mountain forests, an uneven-aged silviculture algorithm, and biodiversity models. We analyzed the effect of parameters related to uneven-aged management practices on timber production, biodiversity, and sustainability indicators. Our study confirmed that the indicators responded differently to management practices, leading to trade-offs situations. Increasing management intensity had negative impacts on several biodiversity indicators, which could be partly compensated by the positive effect of retention measures targeting large trees, non-dominant species, and deadwood. The impact of gap creation was more mitigated, with a positive effect on the diversity of tree sizes and deadwood but a negative impact on the spruce-fir mixing balance and on the diversity of the understory layer. Through the analysis of compensating effects, we finally revealed the existence of possible ecological intensification pathways, i.e., the possibility to increase management intensity while maintaining biodiversity through the promotion of nature-based management principles (gap creation and retention measures).


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Agricultura Forestal/métodos , Bosques , Simulación por Computador , Agricultura Forestal/tendencias , Modelos Teóricos , Árboles
15.
PLoS One ; 10(3): e0117028, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25756212

RESUMEN

Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history) influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth strategies.


Asunto(s)
Árboles/clasificación , Árboles/crecimiento & desarrollo , Algoritmos , India , Modelos Lineales , Especificidad de la Especie , Clima Tropical
16.
Ecol Lett ; 15(8): 831-40, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22625657

RESUMEN

The relative importance of competition vs. environmental filtering in the assembly of communities is commonly inferred from their functional and phylogenetic structure, on the grounds that similar species compete most strongly for resources and are therefore less likely to coexist locally. This approach ignores the possibility that competitive effects can be determined by relative positions of species on a hierarchy of competitive ability. Using growth data, we estimated 275 interaction coefficients between tree species in the French mountains. We show that interaction strengths are mainly driven by trait hierarchy and not by functional or phylogenetic similarity. On the basis of this result, we thus propose that functional and phylogenetic convergence in local tree community might be due to competition-sorting species with different competitive abilities and not only environmental filtering as commonly assumed. We then show a functional and phylogenetic convergence of forest structure with increasing plot age, which supports this view.


Asunto(s)
Filogenia , Árboles/clasificación , Ecosistema , Francia , Dinámica Poblacional , Árboles/crecimiento & desarrollo
17.
Biol Lett ; 7(5): 699-701, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-21525055

RESUMEN

Theoretical models predict weakening of negative biotic interactions and strengthening of positive interactions with increasing abiotic stress. However, most empirical tests have been restricted to plant-plant interactions. No empirical study has examined theoretical predictions of interactions between plants and below-ground micro-organisms, although soil biota strongly regulates plant community composition and dynamics. We examined variability in soil biota effects on tree regeneration across an abiotic gradient. Our candidate tree species was European beech (Fagus sylvatica L.), whose regeneration is extremely responsive to soil biota activity. In a greenhouse experiment, we measured tree survival in sterilized and non-sterilized soils collected across an elevation gradient in the French Alps. Negative effects of soil biota on tree survival decreased with elevation, similar to shifts observed in plant-plant interactions. Hence, soil biota effects must be included in theoretical models of plant biotic interactions to accurately represent and predict the effects of abiotic gradient on plant communities.


Asunto(s)
Altitud , Fagus/fisiología , Microbiología del Suelo
18.
Oecologia ; 163(3): 759-73, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20169451

RESUMEN

Tree species differences in crown size and shape are often highlighted as key characteristics determining light interception strategies and successional dynamics. The phenotypic plasticity of species in response to light and space availability suggests that intraspecific variability can have potential consequences on light interception and community dynamics. Species crown size varies depending on site characteristics and other factors at the individual level which differ from competition for light and space. These factors, such as individual genetic characteristics, past disturbances or environmental micro-site effects, combine with competition-related phenotypic plasticity to determine the individual variability in crown size. Site and individual variability are typically ignored when considering crown size and light interception by trees, and residual variability is relegated to a residual error term, which is then ignored when studying ecological processes. In the present study, we structured and quantified variability at the species, site, and individual levels for three frequently used tree allometric relations using fixed and random effects in a hierarchical Bayesian framework. We focused on two species: Abies alba (silver fir) and Picea abies (Norway spruce) in nine forest stands of the western Alps. We demonstrated that species had different allometric relations from site to site and that individual variability accounted for a large part of the variation in allometric relations. Using a spatially explicit radiation transmission model on real stands, we showed that individual variability in tree allometry had a substantial impact on light resource allocation in the forest. Individual variability in tree allometry modulates species' light-intercepting ability. It generates heterogeneous light conditions under the canopy, with high light micro-habitats that may promote the regeneration of light-demanding species and slow down successional dynamics.


Asunto(s)
Ecosistema , Luz , Fotosíntesis/fisiología , Picea/fisiología , Árboles , Teorema de Bayes , Francia , Italia , Fenotipo , Picea/anatomía & histología , Picea/clasificación , Picea/crecimiento & desarrollo , Especificidad de la Especie , Suiza , Factores de Tiempo
19.
J Theor Biol ; 243(1): 1-12, 2006 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-16875700

RESUMEN

Many theoretical and field studies have emphasized the impact of disturbance in the dynamics and diversity of sessile organism communities. This view is best reflected by the Intermediate Disturbance Hypothesis (IDH), which states that a maximum of diversity is found in ecosystems or communities experiencing intermediate disturbance regimes or at an intermediate stage of development since the last major disturbance event. Although theoretical models based on competitive interactions tend to validate this hypothesis, a recent meta-analysis of field experiments revealed that the mono-modal relationship between disturbance and diversity might not be a general pattern. In this article, we investigate the relationship between disturbance and diversity through the study of patch models, combining two types of competitive interactions: with or without competitive hierarchy, with two mechanisms influencing colonization: negative frequency dependence in colonization rates and immigration. These combinations led to various disturbance-diversity patterns. In the model without competitive hierarchy (founder effect model), a decreasing relationship appeared to be the rule as mentioned in previous studies. In the model with competitive hierarchy, the IDH pattern was obtained for low frequency dependence and low immigration. Nevertheless, high negative frequency dependence in colonization rates led to a decreasing relationship between disturbance and diversity. In contrast, high immigration led to an increasing relationship. The coexistence window (the range of disturbance intensity allowing coexistence) was the widest for intermediate immigration rates. For random species assemblages, patterns with multiple peaks were also possible. These results highlight the fact that the mono-modal IDH pattern should not be considered a rule. Competition and colonization mechanisms have a profound impact on the relationship between disturbance and diversity.


Asunto(s)
Biodiversidad , Modelos Biológicos , Desarrollo de la Planta , Ecosistema , Efecto Fundador , Dinámica Poblacional , Especificidad de la Especie
20.
Tree Physiol ; 20(5_6): 407-414, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12651456

RESUMEN

Empirical and process-based tree growth models have been developedconcurrently; however, their growth predictions have rarely been compared directly. A major difference between the model types is the explicit quantification of foliage biomass as a key variable in process-based models. The aim of this work was to test if this difference has a significant impact on model behavior, especially when simulating silvicultural practices such as intensive thinning. A method was developed to evaluate leaf area and light interception of the mean tree of an even-aged stand from yield table data for Norway spruce (Picea abies (L.) Karst.) in the northern French Alps. Two scenarios were analyzed: (1) a closed stand where leaf area was limited by a maximum leaf area index-represented by young, dense stands, and (2) an open stand where leaf area was limited by the height of the crown base-represented by old, sparse stands. Light interception was calculated based on interpolation between a closed stand (Beer-Lambert law) and an isolated tree (light interception proportional to leaf area). This approach was then used to build a growth model in which competition was described by the ratio of light intercepted by a mean tree of the stand to light intercepted by an isolated tree of the same size. This process-based model was compared with a simpler empirical model in which competition was described by stand basal area. Both models fit well to yield table diameter increment data, the simpler model being slightly better. Simulation of long-term growth, interspersed with thinning, revealed differences between the models. The empirical model was sensitive to thinning and simulated a discontinuous growth pattern, whereas the model based on light calculation showed a smoother growth response to thinning. Simulations of heavy thinning in a dense stand highlighted these differences. The empirical model simulated heavy thinning in a dense stand unrealistically: after thinning, trees immediately grew as fast as trees of similar diameter in an unthinned stand at the same density. In contrast, leaf area played a regulatory role in the model based on light interception: trees with short crowns, as a result of a previous period of growth at high density, benefited little from an increase in light following thinning. It is concluded that models based on physiological or ecological processes have qualitative behaviors different from those of classical empirical models. This is especially important when models are used to make extrapolations far from reference data, for example, to forecast the long-term effect of a new silvicultural strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...